
Deconstructing Linux udev Rules

A TundraWare Inc. Technical Note

Author: Tim Daneliuk (tundra@tundraware.com)

Version: $Id: Deconstructing_Linux_udev_Rules.rst,v 1.131 2015/02/23 16:05:40
tundra Exp $

Précis

udev is one of those pieces of Linux that is fairly well documented and not very well understood. This
note isn’t intended as a general introduction to writing udev rules, but, rather, a brief introduction to
the topic by way of specific example. Most tutorials on this subject only provide you with templates
along the lines of "Here’s how to do <fill in the blank> with udev." The approach here is more about
"here’s why rules work the way they do". Hopefully, you’ll find it useful.

Warning
The examples and descriptions below assume you are running as root. Most of the commands
described will either return nothing or will not work at all unless you are root.
Because you are root and are making device-level changes, you can wholly and completely
Bugger Up your machine (it took me 6 years of graduate school to learn to use that term like
a Real Computer Scientist (tm)).
So ... do the smart thing. Don’t practice this stuff on machines that matter. Better still, spin
up some VMs and play with it there.
You have been warned. We do provide tech support for this stuff. For ordinary work we charge
the usual rates. For fixing things you screwed up, $10,000/hour ... prepaid.

Why Bother With udev?

There are many clever uses for udev documented on the Web, but the most common use is to ensure
that when you connect a device - disk, tape, usb thumbdrive, camera... whatever - to a Linux system,
that device shows up with the same name every time.

Original Unix derivatives had a static tree of devices the system could support. This was encoded in the
/dev file tree hierarchy. This was pretty inflexible in the face of devices being added- and removed from
the system as it ran. For this reason, modern device handling in Linux and most other Unix derivatives
is dynamic - the content of /dev changes to reflect the actual state of the system as things get connected
or disconnected. (Exactly how this is done is outside the purpose of this document, but if you care,
investigate how the Linux /sys filesystem works.)

Our Example Problem

While the example below is "cooked", it is very much rooted in real world udev applications. We want
to do the following things:

∙ Identify a specific disk no matter what name it was assigned name under /dev.

∙ Create a symbolic link to that disk so that - no matter what it’s name under /dev/
might be at the moment - the symbolic link is always the same.

∙ Change the user and group ownership of that disk to something other than the default
(root:disk).

1

mailto:tundra@tundraware.com

∙ Set specific permissions for the disk.

∙ Create a corresponding "raw" character device under /dev/raw associated with our disk
above.

Where Do udev Rules Live?

User created rules - well, created by root, actually - are found in /dev/udev/rules.d. If you look there,
you’ll see that the files there begin with numbers like 50 or 60. udev reads rules in lexical order. That
means it reads the 50... file before the 60... file before the 70... file and so on. This is important
because you have to be careful to insert your rule in early enough in the lexical order so that it can
override any subsequent defaults.

Unfortunately, because of the way udev works, rules read later in the lexical order can also override
earlier rules if we’re not careful. We’ll see an example of this below, and how to fix it.

In our case, we’ll create our rules in the file 15-ExampleRules.rules which should pretty much guarantee
that our rules will be the first ones read.

How Does udev Read Rules?

When udev first starts, or any time it is informed that rules have been changed, it first reads a set of
system-wide default rules in /lib/udev/rules.d/. Then it reads the rules in /etc/udev/rules.d. If
you name your own rule file the same as one of system-wide rules, yours will take precedence. There is
also a way to install "temporary" rules, but the location for such rules is distro-specific.

Ordinarily, the running udev daemon is automatically informed that a rule file has changed and it will
reread them all again when this happens. You can also force a rule reload with:

udevadm control --reload-rules

Another way to do this is to restart the udev daemon or reboot to get the latest rules read in. Note
that the daemon restart procedure is also distro-specific, so you’ll have to figure out what works on your
system. Rebooting is not distro-specific and can always be accomplished by removing all power sources.
This is not a recommended best practice unless there is loud knocking at the door and you have to leave
really fast.

Our Example Rules

We need two rules to achieve our goals above. Notice that the rules below are broken across multiple
lines to make them more readable. In the actual file, they entire rule is put on one line. It is possible to
break rules across lines, but you have to ensure that you follow the syntax that udev expects. To keep
things from mysteriously breaking, it’s just easier to keep the entire rule on one line:

ACTION=="add", KERNEL=="sd*",
PROGRAM=="/sbin/scsi_id --whitelisted /dev/$name",
RESULT=="VBOX_HARDDISK_VB5f712327-2bb4be0c",
SYMLINK+="my_fine_disk01",
OWNER:="3009", GROUP:="421", MODE:="0600",
RUN=="/bin/raw /dev/raw/raw1 /dev/$name"

ACTION=="add", KERNEL=="raw1",
SYMLINK+="rmy_fine_disk01",
OWNER:="3009", GROUP:="421", MODE:="0600"

2

What Does All This Mean?

Rules are made up of key-value pairs separated by an operator. These key-value pairs are separated by
commas. The value (right side) is double quoted. Pay attention to the operators because they too mean
something. For example, = (assignment) is not the same thing as == (checking for equality).

Key-value pairs either match or assign. Match key-value pairs check to see if a particular thing "matches"
what we’re looking for. Think of them as if statements in a programming language.

Assignment key-value statements take some sort of action usually on the thing that was previously
matched. But, you’re not restricted to this. It’s entirely possible to write a rule that operates on
something completely unrelated to the matched condition. For instance, you could write a rule that
says, reboot the computer every time my little brother plugs in his favorite thumbdrive. This is, however,
considered Very Bad Manners and may get you sent to your room without dinner. You may, however,
have a career developing websites for US government healthcare initiatives.

Let’s take each rule apart, one key-value pair at a time:

∙ ACTION=="add", KERNEL=="sd*"

KERNEL=="sd*" matches any time the kernel emits a message with the string sd followed
by anything. For example, the kernel sending messages about sda, sdb, sdc and so on
would all match. But we only want to tune in to these messages when a drive is being
added. We want to ignore other kernel messages with sd* in them when drives are
removed or reporting an error. So, we also include the ACTION="add" key value pair.

Effectively, this lets us look at every drive being added to the system, so we can spot
the one we’re looking for.

∙ PROGRAM=="/sbin/scsi_id --whitelisted /dev/$name", RESULT=="VBOX_HARDDISK_VB5f712327-2bb4be0c"

This is an assignment or "action" key-value pair. Each time the matches above are true,
the scsi_id program is then run to do further checking. $name in this case is the exact
string the KERNEL matching triggered on. So, if it was hdx, then the command here
would be:

scsi_id --whitelisted /dev/hdx

If scsi_id returns a string that matches VBOX_HARDDISK...., then the RESULT key-
value match is also true. In other words, we’re looking for a drive that’s being added
that has a specific unique ID. (On SAN-connected systems, this is called the drive’s
"World Wide ID" or just wwid.)

Note
When you have multiple match key-value pairs in a udev rule, all of them have to be true
for the rule to be invoked. In order for our rule to be applied, the kernel has to report that
something called sd* has been seen AND it’s being added AND it’s ID is the string VBOX.....
If ANY of these conditions are not met, the rule is not applied.

Unfortunately, the command to use to get the unique ID of a drive varies by distro. On
CentOS and Redhat the command is scsi_id. On Ubuntu and Mint it’s scsidev -s
(you may have to install the scsitools package to get this utility). Other distros may
have other ways of doing this.

3

Warning
If you’re running Linux as a guest under VMWare, beware! By default, recent versions of
VMWare ESX, Workstation, and Player do not enable unique disk identification like physical
machines (and Oracle VirtualBox) do. You can read all about it here:

http://www.dizwell.com/wiki/doku.php?id=blog:the_case_of_vmware_and_the_
missing_scsi_id&s%5B%5D=scsi

Basically, you have to set disk.EnableUUID = "TRUE" in your virtual machine’s .vmx file.

Why are we bothering with all this? When disks are added and/or removed from a system, they are NOT
guaranteed to be assigned to the same device node in /dev/. Your drive could show up as /dev/sdh one
time and /dev/sdx the next. This is the price we pay for having a dynamic device system that allows
hot swapping USB devices on your laptop or live presentation of SAN storage to a server. We thus have
to use something that uniquely identifies the drive every time.

Many of the tutorial examples of this on the World Weird Web show this "uniqueness" test using the
major- and minor device numbers. This is an Officially Bad Idea (tm) because there is no guarantee that
the same device will get the same major/minor device numbers every time. These numbers are generated
by the kernel and are based on the order of driver/device loading, the next free number available to the
kernel, and the cosmic ray count in Lower Goscratchistan. Only the wwid (or an equivalent UUID) is
guaranteed to be unique, so that’s what we used here.

If we got this far, it means that all our matching tests were successful: we’ve found the drive we’re
looking for. Now we can do what we set out to do in the first place:

∙ SYMLINK+="my_fine_disk01"

This creates a symbolic link to whatever device mountpoint ended up being assigned
to our disk by the operating system. In other words, if the mount point changed from
/dev/sdd to /dev/sdl after a reboot, our rule would figure it out and point the link
named my_fine_disk01 at that mountpoint.

Notice the use of the += operator here instead of the more usual =. The use of the +=
operator means, "Add another symbolic link to this mountpoint."

The real purpose of this is to provide a consistent device name for software to use when
referencing this disk. Say I’m writing an application. We don’t have to know where the
disk is mounted. We just have to always refer to /dev/my_fine_disk01 and let all this
udev magic do the hard stuff. Remember, it’s our job as Snotty Systems Engineers (tm)
to relieve Applications Programmers of as much thinking as possible. Really, it is. Look
it up in the job description.

Note
Why use a symlink? Why not just rename the mountpoint. It is possible to do this with udev
with the NAME+=... key-value construct. It’s best not to do this because you lose visibility
into the underlying device name when you do this.
It’s handy to know that the actual device name is, say, sdk. For example, ejecting SAN-
attached storage requires you to send things to /sys/block/sdk/device/delete. If you
overwrite /dev/sdk with my_fine_disk01, it’s not immediately clear what the underlying
device actually is. A symbolic link covers both bases.
The only reason to not use a symlink and to actually rename the node is if you happen to have
software that does not properly deal with symlinks. People that write such awful software are
called "n00bs", "sloppy", "bozos" or, possibly just, "programmers at Computer Associates".

∙ OWNER:="3009", GROUP:="421", MODE:="0600

These key-values pairs change the owner, group, and permissions on whatever mount-
point our drive ended up on. That way, we’re assured that, no matter where the drive
gets mounted, it will have ownership and permissions we expect.

4

http://www.dizwell.com/wiki/doku.php?id=blog:the_case_of_vmware_and_the_missing_scsi_id&s%5B%5D=scsi
http://www.dizwell.com/wiki/doku.php?id=blog:the_case_of_vmware_and_the_missing_scsi_id&s%5B%5D=scsi

Here the use of the += operator means something different. It means, "I am the final
rule in this matter. No subsequent rule can change this setting." That’s how we prevent
rules that are read after us (ones with higher numbers in their name) from overriding
what we want. For example, we’ve seen instances of systems using GROUP= that then got
overriden by a later default filesystem rule. This then reset group ownership to disk.
Using := instead, fixed this.

One other thing here: Notice the use of numeric values for UID and GID. You could use
the actual user- and group names here. In fact, most udev tutorials show it this way. It
is a bad idea, especially in large, high complexity datacenters. When a machine boots
that uses remote authentication like ldap, you cannot guarantee you’ll have access to
the authentication server at the time udev wants to set these ownership and permissions
values. This can happen when you have slow, crufty networks that take a long time to
nail up a connection between a server and its ldap authority. The numeric values are
always right (unless some genius is in the habit of changing them often in ldap). You’ll
see the proper user- and group names on your mountpoint when ldap connectivity is
established. If you want to know what the numeric values for user- and group are, do
this:

id username

∙ RUN=="/bin/raw /dev/raw/raw1 /dev/$name"

Now we’re ready to create a raw character device associated with our matching drive. If
you don’t know what this is, you probably don’t need it. If you ever work with database
servers, you’ll find out soon enough :)

Basically, the command above magically creates a raw character device of /dev/raw/raw1
associated with /dev/sd... (our mountpoint).

"But why", you may ask, "are you using the RUN== construct? Isn’t that what PROGRAM==
does?" Not exactly, Grasshopper. PROGRAM== always runs regardless of prior matching.
That’s because PROGRAM== is itself a matching key-value construct. It’s used to figure
out whether a match has taken place (by means of it populating RESULTS). It thus has
to run every time. RUN==, on the other hand, only runs if all prior matching has been
successful.

Why is that important here? Say we boot the system, and the kernel discovers drives
/dev/sdh, /dev/sdi, and /dev/sdj and let’s suppose that the first one has the match-
ing wwid. With RUN== the raw character device will only be created when the full set
of matching occurs - i.e., When the kernel reports the addition of /dev/sdh. But if
you use PROGRAM==, the raw device will be associated every time the kernel reports a
new “/dev/sd*“. The last one to be reported will "win". In this case, that means
/dev/raw/raw1 will be associated with /dev/sdj - not what we want here.

With that under our belts, the second rule should be pretty simple to understand:

∙ ACTION=="add", KERNEL=="raw1"

We want to match any time the kernel reports something called raw1 being added to
the system. Oh, wait, we just did that at the end of the previous rule.

∙ SYMLINK+="rmy_fine_disk01"

Let’s symlink /dev/raw/raw1 to /dev/rmy_fine_disk01. It is a time honored Unix con-
vention that the raw device name be the same as the actual device with an r prepended
to it. You don’t have to do this, but if you don’t, people will hate you, your dog will
probably run away, and your ex-wife will show up again ... and no one wants that.

The DBAs can then configure their database engines to look for the symlink name and
never worry about what the underlying node mapping is for the raw device. Just as
with Applications Programmers, we Snotty Systems Engineers (tm) are required - by

5

law - to make things as easy as possible for DBAs. This one isn’t actually in the job
description, it’s just an act of kindness.

∙ OWNER:="3009", GROUP:="421", MODE:="0600

And finally, as before, we set ownership and permission, this time for the raw character
device, not the associated block device (which we took care of in the first rule).

Final Thoughts

Obviously, you’d have to have another pair of rules for each additional disk you want to manage this
way. Adding another disk would be a matter of changing the unique ID for the RESULT field of the first
rule. You’d also have to change any references to my_fine_disk01 and raw1.

You’ll also have to change the rules above to the program used to check for a unique wwid or UUID on
your particular distro.

If you want to know the current state of what raw devices exist do this:

raw -qa

For reasons that are not entirely clear (to me anyway), the raw command only knows how to create raw
devices whose names begin with raw, go figure.

Another way to get a unique ID for a device is to tail your system log (tail -f /var/log/messages or
tail -f /var/log/syslog) and watch what happens when you plug your device into, say, a USB port.

If you want to know all the attributes udev knows about a particular device, use this, substituting your
device for /dev/sdd

udevadm info --query=all --name /dev/sdd 2>&1| less

The output of this command can be helpful in figuring out just which attributes and values you need to
get to a running rule.

Finally, you can test your rules to see what is matching, again substituting for /block/sdd:

udevadm test /block/sdd 2>&1| less

Most of what is described above applies analagously for non-disk devices like cameras and scanners. The
principles are pretty much the same.

Copyright And Licensing

This document is Copyright (c) 2013, TundraWare Inc., Des Plaines, IL 60018, All Rights Reserved.

Permission is hereby granted for the free duplication and dissemination of this document if the following
conditions are met:

∙ The document is distributed in whole and without modification, preserving the content
in its entirety.

∙ No fee may be charged for such distribution beyond a usual and ordinary fee for dupli-
cation.

Document Information

You can find the latest version of this document at:

6

http://www.tundraware.com/TechnicalNotes/Deconstructing-Linux-udev-Rules

A pdf version of this document can be downloaded at:

http://www.tundraware.com/TechnicalNotes/Deconstructing-Linux-udev-Rules/Deconstructing_
Linux_udev_Rules.pdf

This document produced with emacs, RestructuredText, and TeXLive.

7

http://www.tundraware.com/TechnicalNotes/Deconstructing-Linux-udev-Rules
http://www.tundraware.com/TechnicalNotes/Deconstructing-Linux-udev-Rules/Deconstructing_Linux_udev_Rules.pdf
http://www.tundraware.com/TechnicalNotes/Deconstructing-Linux-udev-Rules/Deconstructing_Linux_udev_Rules.pdf

