
Remote Procedure Calls In The
Distributed Enterprise

c© 1993, T.A. Daneliuk
DePaul University

csctad@hawk.depaul.edu

November 20, 1993

Abstract

There is a great deal of interest currently in how the large com-
puting enterprise is to be integrated into a “seamless whole”. Orga-
nizations find themselves with a wide variety of hardware, operating
systems, and networks in place to run their mission-critical applica-
tions. Remote Procedure Call (RPC) has received a great deal of
attention as the candidate integration mechanism. Here we exam-
ine the structural problems to be solved in the large enterprise and
comment on the viability of RPC as such an integration mechanism.

1



1 Introduction

The advent of low-cost desktop computing has forever changed
the shape of the large computing enterprise. 1 Where once cen-
tralized mainframe computers provided the only viable solution
for such an enterprise, today more and more of the work is be-
ing done on the user’s desk. As the economics have moved
computation away from a single, central site, a de facto dis-
tributed computing environment has been created with most
of the mission-critical data still in a central site, but com-
putation spread throughout the entire enterprise. Moreover,
because this distributed system was largely not planned, but
evolved over time, it is a rat’s nest of incompatible operating
systems, network protocols, data formats, and applications.
This fact alone makes managing the now distributed enterprise
in a single, coherent fashion virtually impossible. Worse yet,
such systems are largely incapable of sharing data or doing any
sort of cooperative computing. In short, the economics of the
new technology has created a legacy of “islands of computing”,
each island invisible to the other.

It is clearly desirable that such an enterprise be integrated

1The term “large enterprise” is a bit vague and is used loosely in the popular literature.
However, we use the term here to describe an organization which has both mainframe and
desktop computing (and possibly mid-range computers as well), uses both Local Area and
Wide Area Networks, serves a large number of users (5000 or more), and requires continu-
ous uptime and availability for its mission-critical applications. This definition is typified
by large corporate information systems but is less representative of large academic or re-
search systems. For instance, the Internet would not qualify because, although continuous
network availability is desirable, it is not required - i.e., There is no sense of ”mission
criticality” in day-to-day operations.

2



into one seamless whole. Not only can applications work to-
gether more effectively in such an environment, but system
management, code reusability, and a general reduction in the
long-term cost of ownership are facilitated by an integrated en-
terprise. Hence, a great deal of effort is today being expended
to find a technically feasible and economically realistic means
to unify the large enterprise. 2

2 Application Integration Models

Any such enterprise integration has several elements to it. Cer-
tainly, a means of normalizing application-to-application se-
mantics is needed. Similarly, there is a need to provide a com-
mon format for the exchange of data. But, both these problems
pale into insignificance when compared to the problem of con-
quering the disparities between networking infrastructures.

Historically, networking technologies and protocols were de-
fined by two entities, private industry and government. 3

Each source had different motives and hence produced radi-
cally different networking technologies. Industry needed highly
reliable and available wide-area networks which could secured

2It is worth noting that the goal is more precisely stated as providing the image of a
unified system from the point-of-view of a mission-critical application. That is, applications
should “see” a unified enterprise even though the underlying system is geographically
distributed and composed of heterogeneous components.

3This is certainly true for the United States, in any case. In Europe and other indus-
trialized nations there was also an influence from the national PTTs and standards bodies
such as OSI and CCITT.

3



and managed from a central site. So, for instance, IBM’s LU
6.2 SNA product is largely configured statically in a central
location. By contrast, government wanted communications
products which simplified connectivity between geographically
separated sites without the need for centralized administration.
This bias can be seen, for example, by the autonomy given to
local name servers in the Domain Name Service (DNS) which
is most often associated with TCP/IP and the Internet. It
is especially noteworthy that the commercial networking tech-
nologies have largely been built with the idea of connecting the
many to the few (as in terminals to hosts) whereas research and
academic networking strongly prefers to connect the many to
the many (as in hosts to hosts). 4

The essence of integrating the large enterprise thus becomes
first the problem of conquering the semantic disparity between
various networking technologies. It is also widely accepted that
any such mechanism should alleviate the applications program-
mer from having to know the intricacies of the various protocol
stacks and networking technologies in use throughout the en-
terprise. It is thus useful to examine the major models which
have been proposed which “insulate” applications from the net-
work and integrate applications across the network into a uni-
fied whole.

4This will figure prominently in a later discussion dealing with protocol session loads
in a distributed enterprise.

4



2.1 Protocol Conversion

Among the earliest attempts to conquer networking hetero-
geneity was Protocol Conversion. In this model, translation
software (and possibly hardware) is deployed throughout the
enterprise to allow translation between any pair of protocols in
use. As traffic between applications flows through the enter-
prise, it is transparently converted from protocol to protocol.

There are two primary drawbacks to this model. First of all,
it is usually the case that there is not a one-to-one mapping
of semantics and services between various networking proto-
cols. This becomes a problem particularly when translating
from a richly functional protocol to a simpler protocol. Con-
sider, for example, the case of mapping a TCP/IP broadcast
onto a protocol which does not support broadcasting. The
protocol converter is forced to mimic the broadcast by sending
individual messages to each of the end points in the domain
of the more primitive protocol. This is so inefficient as to be
practically worthless.

Protocol conversion also has a severe limitation because of the
complexity that must be managed. If a given enterprise uses
n different protocols, it will need to provide n(n− 1) different
protocol conversions. In other words, given n different proto-
cols, there is O(n2) conversion complexity. As n is increased,
the amount of work necessary to support the new protocol
grows rapidly. For example, if the enterprise is using only two
protocols and adds a third, the number of protocol conversions

5



possible rises from 2 to 6. However, if an enterprise is using
four protocols and adds one more, the number of possible pro-
tocol conversions rises from 12 to 20! Again, this is, for all
intents and purposes, impractical in a large environment.

2.2 Migration To Homogeneity

In this model, the enterprise recognizes the inherent complexity
of perpetuating multiple networking technologies. In response,
a plan is implemented which migrates the entire enterprise to
a common networking platform over time. This model is most
often offered by the advocates of so-called Open Systems. Here,
we are told, the solution is to simply migrate everything to the
open protocol (TCP/IP or OSI, depending on which branch of
theology one was schooled in).

The problems with this approach are legion, but several present
themselves immediately. First, a large enterprise will almost
certainly not be able to do everything needed with a single pro-
tocol. 5 For instance, TCP/IP cannot be deployed effectively
as a wide-area protocol where the enterprise is built around
a single, centralized data center. Even the largest mainframe
front-end processors cannot provide the resources necessary to
support tens of thousands of TCP sessions that are connecting
to that single node on the network. 6

5The most obvious supporting argument here is that new protocols evolved precisely
to solve problems which their predecessors could not!

6This is not an exaggeration of session load. By the definition of a “large” enterprise

6



A second objection to this sort of enforced homogeneity is that
the protocol of choice may not be available or well-implemented
on all the different platforms in use by the enterprise. For
instance, TCP/IP is just beginning to mature on IBM MVS
systems. LU 6.2, while implemented on selected Unix systems,
is in many cases too unstable or incomplete to be used as the
single protocol of choice.

Thirdly, older applications which run an enterprise typically
have network-specific dependencies embedded in them. In or-
der to migrate to a single new networking technology, these
applications must be modified or even completely rewritten.
This is often cost-prohibitive. Even in those cases where such
application retooling is economically viable, the time it takes
to migrate many mission-critical applications may not be rea-
sonable.

Finally, retooling the networking infrastructure of a large en-
terprise is not economically feasible. Most such organizations
have millions of dollars of investment in their networks. Even
if technically feasible, any proposed migration plan must be
economically rational. Given the investment already in place
in the enterprise, this is frequently difficult to do.

given previously, the smallest system under consideration here will have 5000 users. At
a minimum, each of these users will have a single active process, typically a terminal
emulation like Telnet or TN3270. If each of these users on average runs only one other
application, say email or file transfer, the total load at the central host will be 10,000
sessions. This is actually a rather small example. Typical enterprises will have on the
order of 20,000 users with a corresponding load of 40,000 sessions at the central host. No
TCP/IP implementation today is capable of supporting this sort of overhead.

7



2.3 Middleware

An increasingly popular technique for conquering network di-
versity is that of Middleware. Middleware broadly refers to
software which provides the illusion of network homogeneity to
an application while at the same time actually operating over
a variety of networking technologies. Examples of middleware
include messaging systems and distributed queuing managers.
Here, a homogeneous programming paradigm is presented to
all applications regardless of where they reside. The middle-
ware software then translates the semantics of that paradigm
into specific calls meaningful to the underlying network ser-
vices.

While middleware is quite effective in this regard, it poses a
number of problems which must be overcome. First, the addi-
tion of middleware also adds a new virtual address space which
must be managed. For instance, a distributed queuing manager
will have a set of queue names which must be associated with
underlying network addresses. Secondly, adding a constant
layer of software between every application and the underly-
ing network can have adverse performance impact. Happily,
these problems seem to be diminishing as middleware vendors
produce successive generations of their products.

8



2.4 Programming Language Extensions

Remote Procedure Calls fall into the category of Programming
Language Extensions. 7 Here, the applications programmer
need not be explicitly aware of the mechanics of networking.
Rather, familiar constructs in the programming language of
choice are used. These are then mapped to appropriate net-
working facilities as needed by the underlying language runtime
and operating system services. This model is popular precisely
because it requires a minimum of training to use effectively.
Since the “extension” of the programming language is actually
done by the language runtime and/or the operating system,
programmers remain largely unaware of the role of networking
in enabling the application and proceed to write applications
as they always have.

Today there is an enormous interest in RPC. In fact, it is fair to
say that the only mechanisms of enterprise integration under
serious consideration are RPC and middleware. The “open
systems” vendors have firmly aligned themselves with RPC.
Both SUN Microsystems Open Network Computing (ONC and
ONC+) and the Open Software Foundation Distributed Com-
puting Environment (DCE) are built on an RPC foundation. 8

7It is also common to see RPC categorized as middleware. The distinctions between
middleware and programming language extensions are somewhat arbitrary and either cat-
egorization (or both) for RPC is probably appropriate.

8The middleware vendors, who largely vend proprietary products, are responding with
their own consortia such as the Message Oriented Middleware group. These vendors have
a strong case for their products because, although both SUN and OSF claim to be “open”,
their respective RPC products cannot interoperate with each other!

9



Because of this very visible support for RPC, some have sug-
gested it as the mechanism of enterprise integration. It is thus
useful to examine RPC in more detail and evaluate its efficacy
in integrating the large enterprise.

3 Overview Of RPC

A Remote Procedure Call is exactly what it’s name suggests.
Namely, the programmer invokes a function call with the pos-
sibility (depending on how the underlying system has been
configured) that the function will actually execute on a remote
server. The key idea here is that the programmer sees the nor-
mal call-return semantics of the programming language in use.
The program has no explicit notion of what is executing locally
or remotely. For all intents and purposes, RPCs act like slow
function calls.

The remote procedure call paradigm for program-
ming focuses on the application. It allows a program-
mer to concentrate on devising a conventional pro-
gram that solves the problem before attempting to
divide the program into pieces that operate on mul-
tiple computers. . .

The remote procedure call model uses the same
procedural abstraction as a conventional program,
but allows a procedure call to span the boundary be-

10



tween two computers. 9

The complexity of managing the details of the required net-
working calls is “pushed down” to the RPC software so that
the applications programmer is insulated from them. In effect,
the basic unit of addressability is a function name, not a net-
work address. As the topology or other operational details of
the network change, the RPC configuration must be changed,
but not each and every application making use of it.

Because RPCs are expected to run in heterogeneous hardware
environments, there is typically some form of data normal-
ization scheme in each different RPC implementation. This
allows the caller to declare a piece of passed data to be, say,
integer, and insures that the called function will understand
it as such. This is quite similar to the case where separately
compiled modules which are later linked together must agree
on parameter order and size for proper operation. SUN, for
example, has a data exchange standard called eXternal Data
Representation or XDR.

The XDR standard has two aspects. The first
addresses the issue of data representation; it defines
a uniform way to represent data types. The second
addresses data description; it defines a language that
can describe data structures of arbitrary complexity
in a standard way. 10

9[CS93, Page 235]
10[Cor90, Page 12]

11



Underlying the call-return interface presented to the applica-
tions programmer, is the RPC mechanism itself. When a func-
tion is called which will ultimately run on a remote machine,
the caller is actually invoking the so-called “client stub” on it’s
own machine. This is a piece of RPC logic which uses the un-
derlying network protocol stack to deliver the call and its nor-
malized parameters to the remote machine. This information
is delivered to the “server stub” on the remote machine which
actually invokes the function in question. When the function
completes the call, the return value is sent from the server
stub to the client stub, again using the underlying networking
protocols and services. Finally, the returned value is passed
from the client stub back to the original calling software. All
of this is accomplished invisibly to the original calling appli-
cation, which is just waiting for the function call to complete
before continuing.

RPCs are frequently cited as the natural way to achieve client-
server computing.

The remote procedure call can therefore be used
to realize a model popularly known as the ‘client-
server model’, in which the client requests a server
to perform a task of which it is capable and waits
until the server completes the task and returns the
required result.

The client-server model splits the information man-
agement function of the operating system into two
components: a front end (client), where the data is
manipulated and displayed; and a back end (server),

12



where data is stored and accessed. The users interact
only with the client directly through a program, and
not with the server. 11

It is, in fact, exactly this model of client-server computing as
enabled by RPC that is today the proposed mechanism for
creating an integrated enterprise.

4 Critique’ Of RPC

In evaluating RPC as a mechanism for enterprise integration, it
is important to distinguish RPC as a paradigm from RPC as an
implementation. Most of the features or limitations discussed
in the following sections are not inherent to the concept of
remote procedure calls per se . Rather, they are artifacts of
RPC as currently implemented.

In the same spirit, this analysis limits itself to features found in
the only two RPC implementations which have current market-
place viability: SUN’s ONC/ONC+ product, and The Open
Software Foundation’s DCE proposal. 12

11[KM91, Page 5]
12In some sense, this is a bit generous. The only RPC actually implemented and in use

extensively today is SUN’s. DCE, while discussed widely, is realistically only in experimen-
tal implementation at this time. Nevertheless, DCE has a significant “paper” following.
A large number of vendors have pledged to implement and deploy it “in the near future”.

13



4.1 Benefits Of RPC

RPC clearly achieves the goal of insulating programmers from
the underlying details of the network. The programmer sees
nothing more than the familiar call-return semantics of the lan-
guage in use. 13 Beyond merely simplifying the programming
process, there is significant benefit in preserving the skill of
the programming staff. To write RPC-based applications, a
programmer requires no large amount of incremental training.

Perhaps more significantly, different distribution schemes can
be tried quickly without major programming impact when
RPC is used. The basic unit of “addressability” from the per-
spective of an RPC-aware program is the name of a function.
Such an application has no direct knowledge of native protocol
addresses or networking semantics. When a new distribution
of workload is to be implemented, the functions to be remotely
executed are ported to the new server locations. The appropri-
ate RPC configurations throughout the network are then mod-
ified to reflect the new locations of service. So, for example,
a program will still call function foo() without being aware
that foo() now runs in a different place. Here, the greatest
benefit is that new applications can be developed as relatively
small pilot projects. Once the application is stable and needs
to grow in computational capacity, it can be distributed across
more capable servers with minor changes to the overall system.

13There is, of course, a great deal of RPC configuration work ”under the covers” which
a systems administrator must undertake. This is quite reasonable because each and every
application is not burdened with such detail.

14



Finally, RPC systems tend to do a good job of typing and
normalizing data. This further insulates applications software
from the vagaries of the underlying network and CPU archi-
tectures. As these enabling technologies inevitably change, the
core logic of enterprise applications remains unaffected.

4.2 Limitations Of RPC

At first glance it would seem that RPC is an intuitive and
obvious way to integrate large enterprises. A deeper analysis,
however, exposes some limitations which bear heavily on this
technology’s viability in such environments.

4.2.1 Synchronous Semantics

The entire paradigm of RPC revolves around the idea of a
function call. While this is a simple, well understood kind of
program behavior, it is often inappropriate for building large
distributed systems. When a function is called, the calling code
halts until the function returns. This “spin locking” or “block-
ing” semantic is generally unacceptable in large environments
for several reasons.

First, this kind of synchronous operation generally yields poor
overall performance because the calling routine must wait for
the called routine. Consider the case where the caller happens
to be a server process. Overall server performance will be very

15



low if the server must wait as each RPC runs to completion.
Obviously, the server needs to continue processing other tasks
while waiting for RPC completions if it is to be maximally
efficient.

Synchronous semantics also pose a problem because they im-
plicitly assume that both the calling and called functions will
be simultaneously available and sane. It is frequently the case
in the distributed enterprise that the producer of data and
the consumer of data need to be independent of each other
in time. This is because applications are typically crafted
and distributed to reflect a business or organizational model
rather than the networking model. If a data producer cannot
reach its corresponding consumer, data production should con-
tinue nonetheless. Applications built strictly on the call-return
mechanism of RPC will fail if, say, a call to the (remote) con-
sumer cannot complete because a network link is down.

Another problem with RPC’s synchronicity arises when one
considers the problem of Mutual Exclusion in a distributed
environment. One can view a distributed system as a loosely-
coupled parallel processor with the network replacing a local
machine bus. In such a model it is important to guarantee
exclusive access to certain common resources such as shared
data, synchronization flags, and so on. Some attempt has been
made to support this directly in the RPC semantics:

The SUN RPC mechanism specifies that at most
one remote procedure in a remote program can be
invoked at a given time. Thus, RPC provides auto-

16



matic mutual exclusion among procedures within a
given remote program. 14

Here, the cure may be worse than the disease. We get mutual
exclusion by enforced serialization at all times. Once again,
synchronicity (as a serialization mechanism) can cause a sig-
nificant loss of parallelism and thus, performance.

A final problem with the synchronous call-return semantics of
RPC is that there is no tail-recursion elimination in the dis-
tributed call tree. If an initial RPC calls another which in turn
calls another RPC and so on, each called function can only re-
turn to its caller. This pairwise call-return scheme means that
performance is sacrificed when multi-server RPCs are needed
to satisfy an initial client request. There is no way to have
the RPC which was invoked last return directly to the original
caller. In large environments it is quite common to need the
processing of several servers before a given client’s request can
be satisfied. 15 RPC semantics guarantee that such situations
will run more slowly than they really have to.

A number of solutions have been proposed to overcome the

14[CS93, Page 243]
15In fact, an increasingly popular work distribution scheme is to create functionally split

processing topologies wherein each hardware node does one, and only one task. This gives
the systems designer very fine-grained control of the distributed environment. Hardware
can be chosen to enable maximum performance and minimize cost for a particular func-
tion. For example, parallel processors can be used to execute scheduling problems (which
are usually NP-Complete) while high I/O bandwidth machines can be used for database
management. By definition, such an approach requires the work of multiple servers to
satisfy a complex client request.

17



fundamental concern of RPC synchronicity. One possible so-
lution is to run RPCs asynchronously - i.e., Issue an RPC call
and then go on processing with the expectation of collecting
the results later. SUN RPC, for instance, does support some
notion of Nonblocking RPC. It is presented as essentially a one-
way message passing scheme. The client invokes an RPC which
returns immediately because no reply is expected. Nonblock-
ing RPC does alleviate the problems of synchronicity but at a
rather high cost:

Another consequence that Nonblocking RPC has
on the semantics of the request is that the RPC Li-
brary no longer takes responsibility for retrying a re-
quest for which a reply has not been received. This
means that if the RPC is sent over an unreliable data-
gram transport such as UDP, the message could be
lost without the client’s knowing it. Applications us-
ing Nonblocking RPC must be prepared to handle
this situation. 16

In effect, Nonblocking RPC gives the programmer asynchronous
messaging semantics at the expense of reliability and program
simplicity.

The more general problem with Nonblocking RPC is that it
does not correlate client requests and server replies. This can
be done by either explicitly polling the server or using a SUN

16[Cor90, Page 148]

18



rendezvous mechanism known as Callback RPC. In either case,
however, the burden of correlating asynchronous client requests
and server replies lies with the application. A preferable model
would be to have the underlying system do this correlation and
free the application to inspect the results only as needed.

Another possibility to overcome this limitation is to run Threaded
RPCs. Here multiple execution paths, or “threads” run simul-
taneously within one process context. The idea is that, while
a given thread may block waiting for an RPC to complete, the
overall process (i.e., other threads) can continue running. The
DCE design calls for its RPC implementation to be thread-
aware:

To improve program performance, RPC server stub
routines use threads internally, enabling RPC-based
servers to handle multiple client requests simultane-
ously. Threads can also be useful when writing ad-
vanced client applications. 17

Threading is probably the most realistic approach to address
some of the problems associated with RPC’s synchronized se-
mantics. (Note that threading does not alleviate either the
producer/consumer or tail-recursion problems outlined above.)
However, a large enterprise is likely to have a variety of oper-
ating systems, not all of which will support threading. Even in
environments where threads are “supported” one must be care-
ful. Often, all that is actually present is the POSIX p-threads

17[RKF93, Page 55]

19



library interface and threads are merely emulated in the oper-
ating system’s user space. In this sort of system, when one
thread blocks all other threads in that process space also block.
This reduces the so-called threaded environment to exactly the
same behavior of a system which has only heavyweight pro-
cesses. i.e., An RPC running under such a thread implemen-
tation will be completely synchronous, exactly as if no threads
were present.

4.2.2 Protocol Dependencies

For all practical purposes, RPCs today operate in a single pro-
tocol environment exclusively (TCP/IP). This alone guaran-
tees that RPC cannot be used as an enterprise integration ve-
hicle. IBM’s SNA networking products are ubiquitous in the
large enterprise and must be accommodated. Furthermore, the
large installed base of LANs demands support for protocols like
IBM NetBIOS and Novell IPX/SPX as well.

SUN does have a Transport Independent RPC product 18 which
is claimed to be free of protocol-dependencies. However, this
product is not available widely outside of UNIX SVR4. Even
if it were, Transport Independent RPC does not transparently
move traffic across multiple underlying protocols.

The transport selection mechanism provides a way
to choose the transport to be used by the application.

18[Cor90, Page 251 ff]

20



Each transport belongs to a class, such as datagram
or circuit-oriented. You can specify either a specific
transport required for the application or a particular
class of transport, or you could leave the decision up
to the user at runtime. 19

The constraint here is that you must choose a single trans-
port protocol. There is no way to initiate an RPC on, say, a
TCP/IP-connected node and have the requested function exe-
cute on an LU 6.2-connected machine. So, even with Transport
Independent RPC, an application can only engage one protocol
per RPC.

4.2.3 Session Loading

There is little question that building robust distributed sys-
tems requires reliable application-to-application dialog. In the
case of RPC this means that the underlying delivery protocol
must be connection-oriented. In fact, each simultaneously ac-
tive RPC requires its own distinct connection. As discussed
previously, the existing enterprise networks were built with
centralized computing in mind. It is practically impossible
to terminate the required number of connections (transport
sessions) at a single site on the network.

Even assuming that the total session load could be supported, a
large network with many active sessions is inherently expensive

19[ibid, Pages 251-252]

21



and hard to operate. It is expensive because a large session load
implies that more computer resources (memory and CPU) are
needed to maintain the state of all the active connections. It is
hard to operate because, when the network fails, it is very time-
consuming to reestablish the thousands of needed connections
all at once. Such network recovery operations can literally take
hours which is unacceptable in most enterprise operations.

4.2.4 Legacy Integration

Any enterprise integration strategy must consider the large
base of existing applications. More particularly, such a strat-
egy should provide for the integration of these software lega-
cies with the newer applications and technologies. The bulk
of legacy applications were written with the old host-terminal
paradigm in mind. The “currency of the realm” for such ap-
plications is not a function call but a screen image. That is,
older applications expect to get work requests in the form of a
formatted screen and return results in the same format.

Many older applications were explicitly written to be run under
a transaction monitor like IBM CICS. Such TP Applications
are event driven. The user creates what amounts to a message
and ships it to the TP monitor by pressing the transmit key
on their terminal. The TP monitor then starts up the relevant
applications code based on the content of that message. Mating
such an application to the larger enterprise via function calls
can be quite clumsy. A more natural model is to interact with

22



legacy TP applications via messaging middleware.

4.2.5 Enterprise Management

In the large distributed environment there is an increasing em-
phasis on remote management. The idea is to distribute com-
putation and possibly data, but manage centrally. As currently
implemented, there is no facility for centralized management
of the underlying RPC configurations scattered across the net-
work. This is a distinct drawback. RPC is able to offer the
programmer as simple interface at the expense of substantial
and complex underlying RPC configuration. It is impractical
to insist that such configurations must be manually managed
on a site-by-site basis.

It could be argued that, since there is a network connecting
all machines participating in RPCs, the systems administrator
could simply remotely login to each machine to administer its
RPC configuration. Not only is this manual approach ineffec-
tive in a large environment, the desire exists to do such ad-
ministration programmatically, not interactively. This is why
network management protocols such as SNMP and CMIP have
been developed. To be effective in a large environment, RPC
will have to become a participant in such management archi-
tectures.

23



4.2.6 Interoperability

Different RPC implementations from, say, SUN and OSF share
a common vision of the programming interface. They are, af-
ter all, trying to make things look as much as possible like
a function call. They do not, however, share a common un-
derlying RPC protocol. It is thus impossible for the two to
interoperate with each other. 20 RPC cannot, therefore, real-
istically be considered a truly open standard. The paradigm is
certainly standardized, but the actual implementations remain
proprietary.

5 Conclusions

What seems most obvious about RPC is that it is a model born
in small homogeneous environments. Although it is conceptu-
ally satisfying and paradigmatically powerful, RPC does not
“scale up” to large enterprise systems very well. Its underlying
semantics, while largely invisible to the application, nonethe-
less cripple actual operations in multi-thousand node networks.
The inability of existing RPC products to easily span heteroge-
neous networks is an almost insurmountable limitation given
the extant installed base of legacy networks. Moreover, the
session load required by reliable RPCs in the centralized en-
terprise are cost-prohibitive at best, and technically intractable

20It is not a little amusing to note that this situation exists between two organizations
that pride themselves as being leaders in “open” computing!

24



at worst. It is therefore unlikely that RPC will gain ultimate
exclusive acceptance in the large enterprise. Until and unless
the problems with RPC outlined here are addressed by the
vendors, RPC will most probably be relegated to solving more
minor, localized problems.

25



References

[Cor90] John R. Corbin. The Art Of Distributed Applications.
Springer-Verlag, New York, 1990.

[CS93] Douglas E. Comer and David L. Stevens. Internet-
working With TCP/IP, volume III. Prentice Hall,
Englewood Cliffs, 1993.

[KM91] E.V. Krishnamurthy and V.K. Murthy. Transaction
Processing Systems. Prentice Hall, New York, 1991.

[RKF93] Ward Rosenberry, David Kenney, and Gerry Fisher.
Understanding DCE. O’Reilly & Associates Inc., Se-
bastapol, 1993.

[Ste90] W. Richard Stevens. UNIX Network Programming.
Prentice Hall, Englewood Cliffs, 1990.

26


