
Divorce Your Linux Admin

Package Management For Lusers

If you run Linux on your own machines, you’re used to having root and doing what you jolly well like.
But, if you’ve ever spent more than about 10 minutes in a large coporate IT environment, you learn
pretty quickly that root is hard to get, it takes a ton of paperwork to get anything done, and you usually
have to wait forever. I’ve actually had the experience of waiting for 6 weeks to get permission to install
a single symlink ... and I had root!

There is a good reason for this, of course. Security threats are very real, lawsuits are ominipresent, and
the Geniuses In Charge (tm) are writing regulation and audit compliance rules that make root canals
seem like fun. Information Security people may feel like they are the IRS of the business, but they
perform an important and necessary task: Saying "No".

So ... is there a better way? Is there a way to eliminate the requirement for root in most day-to-day
things we need to do as users and developers. Is there a way we can comply with the required corporate
security constraints, but still run our own happy show? The answer is a qualified "Yes".

Some things do- and always will need root: Managing devices, storage, ulimits, and security configuration
leap to mind. But, say, all you want is a newer version of java on your servers. Or suppose you want a
package that isn’t part of your standard OS load. vi is everywhere, but suppose you want to use emacs
instead (as you should).

You could, of course, download the source for the programs you want, configure and compile them, and
run them, say, out of your home directory. Oops ... standard IT corporate security practice is to never
allow a compiler to exist on a production host. There are ways around this, but it’s fairly painful to
have to do that for every single package you may want. (If you don’t think so, I encourage you to try
and bootstrap the gcc compiler chain from scratch. It’s a ton of fun. No, really, it is ...)

Wouldn’t it be nice if we could implement package management in userland in a way that is repeatable,
can be automated, and gives us control of our own universe without having to beg for root changes or
have to wait for the vendor to release a new version. Well, Sparky, we have the techology to do just that.

It’s worth mentioning that the approach outlined below is especially handy with cloud and on-demand
computing. It makes automating a standard toolset deployment pretty simple. It’s also actually handy
on your own machines when you do have root. The less you use superuser, the less chance you’ll screw
something up.

Warning
What follows has been implemented on an experimental basis. It’s been tested in only a very
limited number of systems but seems to work well. However, you should do your own detailed
testing before deploying this into a production environment. Failure to do so may result in
broken systems, hallway snickering, hives, and being transferred to your new development
shop in Moose Dropping Pass, Alaska.

MacOS Rescues Linux
The approach we’re going to describe got started in the Mac OSX world. Back when Apple finally came
to their senses, and switched their OS to a Unix-base (FreeBSD 4.4), they only partly implemented the
shell tools everyone had come to know and love. The homebrew project got spun up to allow any OSX

1

user to install the command line applications they knew from Unix. homebrew is essentially a userland
package management system which can be run and modified without superuser power. Many of these
packages (these days, perhaps all, I haven’t checked) actually download a pre-compiled version under
/usr/local.

This ended up being pretty popular with advanced Mac users. So much so, that a derivative project,
linuxbrew, got spun up to take the Mac stuff, but apply it to Linux. That is, give the Linux user
userland package management system. It too, has found success among the Linux literati.

But ... there is a fly in the ointment. When I first undertook this project, I thought I could just pick a
directory on Linux machine and use linuxbrew to install what I wanted. No habla Senor Frog. Many
Linux binaries are sensitive to where they are installed, where they can find their supporting libraries
and a host of other things. So, if I install a binary with linuxbrew somewhere other than the default
/home/linuxbrew, it’s likely not going to work. But that ability is exactly what I needed. Each different
application, user, or service ID should be free to install their desired tool set wherever they wish.

"So", sez me, "I’ll just use linuxbrew to automate the download, configuration, compliation, and instal-
lation of all the packages." i.e., "I’ll automate the build from source." (That roaring laughing you hear
is coming from every Linux engineer who ever tried something like this.)

I will spare you sensitive readers the subsequent cursing, whining, begging, crying and caterwauling
that ensued. Let’s just say that making a position-dependent package management system work in a
position-independent way is ... er, non-trivial. In fairness, it’s not the fault of the linuxbrew people.
They were super supportive and helpful with all this. It wasn’t their code that was the problem (mostly,
I did find a minor bug or two which the linuxbrew folks fixed at light speed). Most of the issues had to
do with the packages themselves having embedded assumptions about where they can find tools during
the compilation phase. That’s right, the source code and configurations have hardwired assumptions
about where they would find things like perl.

At this point, the whole process had taken me a few dozen hours and I was sufficiently enraged that I
just had to figure out. As we’ll see shortly, I think I finally got there. But, in the mean time ...

Note
If you write software, config files, makefiles, test cases, or any part of the software delivery
ecosystem with hardwired paths to things emebedded in them, you are officially a big bozo. Not
the fun kind with a red nose and big shoes either. The only hardwired path that’s OK is
/bin/sh on a shebang line. But if you do things like this:

#!/usr/bin/python
You should be sent to work 1st level phone support on the midnight shift in Somalia until you
learn better. Grrrrrr.
This is the right way to do this is:

#!/usr/bin/env python
env can reliably be found there and it will "discover" where python happens to actually
be installed on that machine, so long as it is in $PATH somewhere. Similarly, learn to use
constructs like:

DATE=$(which date)
DATE=${DATE:-/bin/date}

In short, NEVER make assumptions where things are. Always discover it at configura-
tion time.

Preview Of Coming Attractions
What I eventually discovered was that getting this to work required a number of things:

1) Everything has to be built from source in the directory location being targeted. The
only exception is the brew program itself, which is position agnostic. So, if I want
to build a tools tree under /my/fine/tools, then I have to clone linuxbrew into
that directory and do the build from there.

2

2) The initial build requires the OS compiler chain and related development tools
to bootstrap up a minimal linuxbrew environment capable of compiling every-
thing else. You can do this on your own machine (not recommended because you
shouldn’t be fidding around as root there), but a better way is to do it in a VM.
In my case, I made it even simpler by doing everything in docker containers.

3) Once you have a bootstrapped linuxbrew environment running - i.e., One that has
a functioning gcc and supporting tool chain - you make a tar backup of it. You
then untar that onto a machine that has (almost) no native OS development tools
on it and do the remainder of the installations from there.

It’s "almost" because of the aforementioned dain bramaged open source packages
hardwiring of paths. For example, you have to have the OS copy of perl installed
on your build machine. Many open source packages just insist that perl is always
to be found under /usr/bin.

4) When you’re all done installing and configuring your linuxbrew environment, you
just tar it off somewhere safe. You can then untar it onto any other Linux machine
(with a reasonably similar kernel) so long as you do so at the same directory location
under which it was built.

This lends itself nicely to automated deploys via tools like tsshbatch or ansible.
You build a master tarball of your "standard" tools tree and then use automated
deployment to put it everywhere.

Doing It The docker Way
Like I said, you can do this in a VM, but the step-by-step approach below uses docker containers which
are easy to setup and tear down for testing. More importantly, you can install and remove native system
packages as you go without gumming up your host system. I’ve used this approach extensively over the
past several years for another important reason: I always have root on a container. That makes it trivial
to do the required OS package management (installing- and removing native compilers, for example).

In my test environment, the containers have a number of properties. You don’t have to do it this way,
of course, but it makes things a lot simpler if you do:

∙ They run sshd so I can log into them easily from the host system.

∙ I have the ability to log in as an unprivileged user (test) or as root. test also has the
ability to sudo to superuser.

∙ They share a filesystem with the host so that I can read/write files from any running
container AND the files I do write persist across container rebuilds.

∙ The containers get started with the --security-opt seccomp=unconfined option. Build-
ing emacs revealed the need for this. By default, docker starts containers with restricted
access to many of the host OS system calls. It does so in order to keep the container
isolated from its host environment. But this badly broke the emacs build which had fits
because the way the OS was allocating memory. The fix is to use the above argument
to give the container full access to all the system calls. You do not want to do this in
normal container operations. This is strictly for building things. More information on
this here:

https://pastebin.tundraware.com/view/e309f836

Let’s Do This Already
∙ The steps below should be done in the order given.

3

https://pastebin.tundraware.com/view/e309f836

∙ Whenever it says, "create a new docker container", do so with the --security-opt seccomp=unconfined
option.

∙ This example assumes CentOS/RedHat7 docker images, so the native package management com-
mands are based on yum.

∙ This example assumes that we want to build our tools tree under /opt/TundraWare/tools. Feel
free to use your own directory location, but do so consistently throughout the process.

∙ Make sure the user doing all this has write access to your target tools directory.

∙ This example assumes that /shared is common to both the host and docker instances. It’s where
we’ll preseve our tarballs and other project artifacts across container rebuilds.

Procedure

Note
If you’re doing this behind a proxy, you may need to configure things to get around man-in-
the middle madness introduced by many enterprise proxies. Things like curl need to verify
certificates to initiate TLS transport. System curl knows how to find the OS trust store, but
the curl we build with this procedure has its own trust store that needs to be made aware of
your CA chain.
This procedure creates new openssl instances (1.0 and 1.1) they need to be made
aware of your system’s CA chain right after they are installed. The exist-
ing .../tools/etc/openssl/cert.pem and .../tools/etc/openssl@1.1/etc/cert.pem
should be moved to a backup name or location. Then these names should be symlinked
to the CA chain found in your system trust store. On a CentOS system this is typically found
under:

/etc/pki/....
You’ll have to see how your system is configured to find the CA cert chain you want.
If you absolutely cannot get this working you can turn off certificate validation but this is
highly discouraged. By doing so, you can introduce code from illegitimate sources this way:

echo insecure >> ~/.curlrc
git config --global http.sslVerify false

First, we’re going to create the bootstrap instance:

1) Create a new docker image. Log in as or become root on it. Then:

yum -y groupinstall "Development Tools"

2) Now login or revert back to being an unprivileged user. Then:

git clone https://github.com/Homebrew/brew.git /opt/TundraWare/tools

3) Do not include the tools directories we’re about to build in $PATH. We only want
to use system tools in this phase of the build.

4) Now, bootstrap the environment using the native OS compiler tools:

brew install gcc make nload

nload? Really? Yes. Some packages seem to insist that they only way they’ll build
is via the system tools. Stuff that depends on autoconft, automake, and perl can
be particularly snarky about this. So ... we just add such packages to the bootstrap
phase.

5) Tidy up:

brew config # Check the environment
brew prune # Tidy up from the bootstrap build
brew cleanup # Get rid of old build artifacts
brew doctor # Check to make sure things look OK

4

6) Save the result:

tar -czvf /shared/bootstrap-linuxbrew.tar.gz /opt/TundraWare/tools

Now we can build a freestanding instance of the tools tree without (almost) any OS tools. The example
below should be tuned for the packages you want:

1) Create a new docker image. Log in as or become root on it. Then install the
minimal set of tools required to accommodate the previously described package
build silliness:

yum -y install perl autoconf automake

Make sure the native development tools are NOT otherwise installed in this in-
stance.

2) Install our bootstrap environment:

tar -xzvf /shared/bootstrap-linuxbrew.tar.gz -C /

3) Update the path to search our new tools tree for things first. It’s a good idea to
also put this into .bashrc and then copy it to /shared for future use:

export PATH="/opt/TundraWare/tools/bin:/opt/TundraWare/tools/sbin:$PATH"

4) Now we can start installing our desired packages. Note that we are now using the
linuxbrew compiler chain, NOT the system tools. Notice also that we want to
install our languages before anything else, so that subsequent tools installations
will use these rather than the ones present in the OS:

brew install perl python
ln -s /opt/TundraWare/tools/bin/python2 /opt/TundraWare/tools/bin/python
ln -s /opt/TundraWare/tools/bin/pip2 /opt/TundraWare/tools/bin/pip
pip install ansible pew pew[pythonz] -U --ignore-installed
brew install emacs file-formula git htop joe nmap screen the_silver_searcher tree vim
... and so on.

5) Save the results:

tar -czvf /shared/full-linuxbrew.tar.gz /opt/TundraWare/tools

Deploying The Tools
You should now be able to install and use this tool tree on a new docker, VM, or physical Linux instance
by doing this:

tar -xzvf /shared/full-linuxbrew.tar.gz -C /
export PATH="/opt/TundraWare/tools/bin:/opt/TundraWare/tools/sbin:$PATH"

If all you want to do is execute the binaries you’ve just installed, that should be it.

If you also want to be able to install additional packages in the new tools instance, you may need to
install system perl, automake, etc. as mentioned above.

This is not really a great idea, though. The better way is to keep a master tools configuration on a
build server, and add- or delete content there as we’ve just seen. Then build tarballs for distribution via
tsshbatch or ansible. If each tools instance does its own upgrades, when you finally do release a new
master update, it’s likely going to wipe or or conflict with the local bespoke version.

Gotchas
Here are a few things to keep in mind:

5

∙ Some packages are just broken and require surgery to get working. For example, socat
requires openssl@1.1. However, as of this writing, that package will not install, so
socat won’t either. The fix turns out to require a manual installation that disables
testing:

brew install openssl@1.1 --without-test

∙ When you bootstrap the system, you are building it with the OS’ own compilers and
header files. You’re actually producing a compiler that will be used to compile the rest
of your packages. If you later copy your work to a machine with a wildly different older-
or newer kernel, you may run into compatibility issues. The fix is to redo the above on
a host with the kernel version of interest.

Resources
You’ll find support for automating most of this work (via a makefile) at:

https://gitbucket.tundraware.com/tundra/tools-builder

The main linuxbrew page is:

http://linuxbrew.sh

The related GitHub projects are here:

https://github.com/Linuxbrew

If you run into a problem building a package, run this command:

brew gist-logs package-name

This produces a Github gist URL you can submit to the devs for help.

Author & Copyright
Tim Daneliuk, tundra@tundraware.com

Divorce Your Linux Admin is Copyright (c) 2017-2018 TundraWare Inc., Des Plaines, IL 60018 USA

Permission for unlimited distribution and use of this document is hereby given so long as this document
is reproduced in full. This document may also be quoted in any part so long as original attribution is
provided with the quoted material.

Document Information
Revision: a452c97

Produced On: Thu Jan 11 15:02:56 CST 2018

You can find the latest version of this document at:

http://www.tundraware.com/TechnicalNotes/Divorce-Your-Linux-Admin

A PDF version of the document may also be downloaded from:

http://www.tundraware.com/TechnicalNotes/Divorce-Your-Linux-Admin/Divorce-Your-Linux-Admin.
pdf

This document was produced using reStucturedText and TeXLive.

6

https://gitbucket.tundraware.com/tundra/tools-builder
http://linuxbrew.sh
https://github.com/Linuxbrew
mailto:tundra@tundraware.com
http://www.tundraware.com/TechnicalNotes/Divorce-Your-Linux-Admin
http://www.tundraware.com/TechnicalNotes/Divorce-Your-Linux-Admin/Divorce-Your-Linux-Admin.pdf
http://www.tundraware.com/TechnicalNotes/Divorce-Your-Linux-Admin/Divorce-Your-Linux-Admin.pdf

